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Abstract

The subject of this paper is the study of interactions between delamination and geometrical nonlinearities[
This problem generally addressed by means of Fracture Mechanics\ is here treated by modelling interfacial
degradation through irreversible\ softening interface constitutive laws[ Geometrical nonlinearities are associ!
ated to large displacements of thin layers which are assumed to be hyperelastic[ A general formulation is
presented and then specialised to the case of rectilinear laminated beams[ Numerical aspects concerning
_nite element implementation are discussed together with a local control algorithm for the treatment of
unstable paths[ Numerical examples showing the e}ect of interaction between geometrical and material
nonlinearities are presented[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Delamination plays a central role among the degradation phenomena in composite materials[
It is generally initiated by large interlaminar stresses due to either edge e}ects near joints\ impacts\
concentrated loads or manufacturing defects[ The initial delamination can propagate in a stable
or unstable way and eventually can be the origin of structural failure[

During the propagation phase\ depending on the loading conditions\ the delaminated area can
reach a critical size and buckling of layers can occur[ Buckling can then increase the interlaminar
stresses and accelerate the propagation of delamination[ Geometrical e}ects can also be important
due to large displacements which show up in thin structures such as those made with composites[

Initiation and propagation of delamination cracks are often studied separately[ When a large
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initial delamination defect exists\ Fracture Mechanics can be used for the prediction of propagation
as is generally done in the existing literature "see e[g[ Wang\ 0872^ Johnson\ 0874^ Williams\ 0877^
Pagano 0878#[ In order to predict initiation "when no initial cracks exist# and propagation speci_c
approaches based on the description of material degradation in the interlaminar region\ have to
be used[ In some works both interlaminar and layer material degradation are modelled "see e[g[
Ladeve�ze\ 0881^ Allix and Ladeve�ze\ 0883# while more often only interface decohesion is taken
into account[ This has been done\ in the geometrically linear range\ through the use of interface
constitutive laws which relate tractions to displacement jumps along a surface representing the
delamination crack "Allix and Ladeve�ze\ 0881^ Daudeville and Ladeve�ze\ 0882^ Schellekens and
de Borst\ 0881^ Corigliano\ 0882#[

Studies which aim at determining critical conditions of propagation when the delaminated area
is prone to buckling\ generally combine the theory of stability\ Fracture Mechanics and numerical
simulations[ The _rst works on buckling and growth of delamination are those of Kachanov
"0865#\ Chai et al[ "0870#\ Bottega and Maewal "0872#\ Evans and Hutchinson "0873#[ In these
works the reference problem concerns the so!called thin _lm approximation where local buckling
of a surface delamination can be dealt with in an analytic form[ More recently\ approaches based
on the evaluation of the Energy Release Rate in a geometrical nonlinear context have been
proposed[ These allow one to follow\ in a _nite element context\ the propagation of delamination
induced by buckling "see e[g[ Storakers and Andersson\ 0877^ Storakers and Nilsson\ 0882#[ In
order to compute the nonlinear response preceding delamination\ asymptotic!numeric methods
based on perturbation analysis have been used to obtain low!cost information about the critical
load and the initial post!buckling behaviour with small range propagation of the delaminated area
"see e[g[ Cochelin and Potier!Ferry\ 0880^ Cochelin et al[ 0882^ Kardomateas\ 0882#[ Buckling
induced delamination has also been treated through the use of elastic springs with _nite strength
for the simulation of decohesion in Bruno and Grimaldi "0889#[

The purpose of the present paper is the study of delamination processes by means of a uni_ed
formulation which takes into account initiation and propagation together with geometrical e}ects[
This is accomplished by making use of interface models for the description of material degradation
along the layer connections and of a large displacement formulation[

In order to make use of interface models developed in the linear geometry range\ it is here
introduced the fundamental hypothesis that displacement discontinuities "jumps# along delami!
nation surfaces are small before the local complete failure of interlaminar connection[ Due to this
hypothesis\ it is possible to de_ne an interface "delamination surface# which follows the current
con_guration of the body "laminated# and over which material degradation modelled by an
interface constitutive law takes place[ After complete separation along the interface\ the contact
conditions of the separated surfaces are treated in an approximate way\ thus allowing the use of
special interface laws also for the description of contact conditions[

The proposed formulation allow the complete study of delamination processes\ from initiation
to structural failure[ In particular delaminationÐbuckling interaction can be studied and propa!
gation of post buckling delamination can be followed[

The present work is a generalisation to the case of nonlinear geometric e}ects of previous works\
Allix\ et al[ "0883# and Allix and Corigliano "0885#\ where fracture propagation in delamination
specimens in pure and mixed mode conditions has been studied[

An outline of the paper is as follows[ In Section 1 the basic assumptions of the proposed
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formulation are discussed and the governing equations are introduced\ an elasticÐdamage interface
law is described[ The formulation proposed in Section 1 is particularised in Section 2 to the case
of laminated rectilinear beams[ Some details on the _nite element implementation and on the
solution strategy are discussed in Section 3[ In Section 4 simple numerical examples are presented
and discussed concerning mode I delamination[

1[ Basic hypotheses and formulation

Consider a body V in which a set of m surface Gi is embedded[ The surfaces Gi\ called henceforth
interfaces\ are loci of possible displacement discontinuities due to decohesion processes such as
delamination in composite materials\ which cause a progressive decreasing of cohesive stresses\
until possible complete separation[ The set of all interfaces is referred to as G\ while V? denotes
V−G[

The problem under discussion is the study of the response of the body V\ subject to a given
loading process which is a cause of large displacements from the starting con_guration\ while the
interface G can be progressively damaged until complete separation of the two parts of the body
V initially in contact along G[ In Fig[ 0 a schematic representation of the solid V containing an
interface G is shown[ The interface G separates V in two parts denoted with ¦ and −\ the normal
n to G is directed toward the positive part of V[

The study of the above problem is based on the following assumptions and hypotheses]

"a# large displacements are possible in the body V?^

Fig[ 0[ Schematic representation of two solids V in contact through an interface G[
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"b# the behaviour of the body V? is hyperelastic^
"c# along G the displacements can be large but the displacement discontinuities are small in the

non!fully delaminated part of the specimen or in the contact region^
"d# an irreversible\ softening behaviour is attributed to G by means of an interface law connecting

tractions to displacement discontinuities^
"e# isothermal conditions are assumed^
"f# the loads do not depend on the con_guration of the body\ i[e[ follower forces are not considered[

Hypotheses "a# and "b# characterise the behaviour of the body V? as a whole[ These can be
applied to the study of many real cases\ in particular they allow the study of the in~uence of
geometrical e}ects on delamination in composite materials and therefore of buckling!induced
delamination[ Hypothesis "c# speci_es the constitutive behaviour of the interlaminar connection
and situations where the parts of the interfaces which come into contact are close to the delami!
nation front[ This simpli_cation corresponds to situations often encountered for crack propagation
in laminates\ adhesives\ glues and rubber connection[ [ [ [

Let us de_ne by V?9 and G9 the con_gurations of the body and of the interfaces at time t � 9[
These are considered as reference con_gurations during the transformation process[

The displacement discontinuity vector ðuŁ on the interface is given by the di}erence of dis!
placements pertaining to positive and negative parts "see Fig[ 0#]

ðuŁ �"m¦−m−#"m9# m9 $ G9 "0#

where points in the reference and current con_gurations have been noted by m9 and m\ respectively[
Each interface G9 is initially divided in a completely cracked part G9d"t � 9# "e[g[ an initial

delamination in composites# and a part G9nd"t � 9# on which the cohesion between V¦ and V− is
complete[ The initial delaminated region is composed of points which are in contact but through
which no cohesive tractions can be transmitted[ During the loading process the delaminated part
G9d"t# "seen as the image of the reference con_guration# can increase^ moreover in the delaminated
region it is possible to have points of parts V¦ and V− which loose contact\ regain contact after
separation\ or remain in contact[ In the present work no true contact conditions are considered
between the two surfaces of the delaminated part\ the contact points which are taken into account
are only those which were in the same position in the initial con_guration\ they are the image of
the set called G9c"t#[ The point which are separated are the image of the set called G9s"t#[

Due to the above considerations the reference interface G9 at a time instant t is partitioned as]
G9 0G9nd"t# G G9c"t# k G9s"t#[

The de_nition of the current image of G9nd"t# is based on hypothesis "c#[ With this hypothesis a
separation of the body V? in two parts is allowed\ along the non!delaminated region of the interface\
but this must be small with respect to a characteristic length of the surface G9[ It is therefore
possible to de_ne a unique interface Gnd"t# in the deformed con_guration\ to which an interface
law can be attributed following hypothesis "d#[ The de_nition of Gnd"t# is based on the mean value
um"m9# of displacements relevant to positive and negative sides "see Figs 0 and 1#[

um"m9# 0
m¦¦m−

1
^ Gnd"t# 0 "m:m $ G9nd"t ^ m � m9¦u"m9## "1#

With the above de_nition Gnd"t# is seen as a mean surface between the upper and lower displaced



O[ Allix\ A[ Cori`liano:International Journal of Solids and Structures 25 "0888# 1078Ð1105 1082

Fig[ 1[ Graphical de_nition of the interface G[

parts\ which in fact can be considered to be geometrically coincident thanks to hypothesis "c#[
Gnd"t# can thus be viewed as a zero!thickness medium which ensures stress transfer from one part
to another[ Hence it is possible to de_ne an interface law as a relation between the interface traction
vector t and the displacement discontinuity vector ðuŁ[ The interface traction vector t � sn is the
component of the Cauchy stress tensor s along the direction n normal to the interface\ in the
current con_guration[

Account taken of what precedes\ the de_nition of Gc"t# is the following]

Gc"t# 0 "m:m9 $ G9c"t# ^ m � m9¦um"m9 ^ ðuŁ"m9# = n � 9# "2#

On the part Gc"t# unilateral contact conditions\ with or without friction\ can be imposed by
means of an interface law\ as shown in Section 1[1\ thus implying the same kind of treatment for
parts Gnd"t# and Gc"t#[

A de_nition of Gs"t# is not necessary for the solution of the problem under discussion\ due to
the fact that tractions are not transmitted along the delaminated and not in contact parts\ and to
the approximate de_nition given for the set of contact points[

1[0[ Equilibrium and elastic behaviour of the body

For the sake of simplicity let us denote in what follows with the symbol G the sum of parts
Gnd"t# and Gc"t# of the current interface[

Equilibrium of the body V in the current con_guration can be expressed through the virtual
power principle]
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gV?

s ] D�"v�# dV¦gG
t = ðvŁ� dG � P�e for any V�$ V^ D� �

0
1 0

1v�
1m

¦0
1v�
1m1

T

1 "3#

In the above equation] V is the set of kinematically admissible velocity vectors v�^ s is the
Cauchy stress tensor^ D� is the rate of deformation tensor^ ðvŁ� � v�"m¦#−v�"m−# is the velocity
discontinuity vector de_ned on G^ P�e is the power of external loads[

Hypothesis "b# allows one to conveniently use Lagrangian tensors for the expression of the
internal power relevant to be the hyperelastic body V?[ The _rst term in eqn "3# can then be
rewritten as]

gV?

s ] D� dV � gV?9

P ] Eþ� dV9 "4#

where P denotes the second PiolaÐKirchho} stress tensor and Eþ the rate of the Lagrangian strain
tensor[ Eþ is related to the Cauchy stress s\ to the rate of deformation D and to the deformation
gradient F by the following relations]

P � JF−0s"F−0#T^ Eþ � FTDF^ F �
1m
1m9

^ J � det F "5#

It is also useful to recall the expression of the Lagrangian strain E tensor as a function of the
displacement _eld u]

E �
0
1 00

1u

1m91
T

¦
1u

1m9

¦0
1u

1m91
T 1u

1m91 "6#

The hyperelastic constitutive law in the body V? is here expressed through the introduction of a
convex functional C"E# such that]

P �
1C"E#

1E
"7#

After the introduction of eqns "4# and "7# in the virtual power principle "2#\ this can be rewritten
in the following form]

gV?9

1C"E#
1E

] Eþ� dV9¦gG
sn = ðvŁ� dG � Pe� ^

for any v� $ V\ Eþ� � FTD�F\ D� �
0
1 0

1v

1m
¦0

1v�
1m1

T

1 "8#

1[1[ Interface constitutive law

Hypothesis "c# introduced at the beginning of Section 1 has allowed the de_nition of an interface
G in the current con_guration[ It is therefore now possible to speak about interface points and
interface quantities[ As already observed in the introduction of the paper\ the interface is introduced
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in order to be able to simulate decohesion processes which can occur in layered composites or\
more generally\ in elastic media with concentrated damage[

The simulation of decohesion can be obtained through the formulation of irreversible\ softening
interface laws\ as assumed in hypothesis "d#[ In the interface constitutive law displacement dis!
continuities play the role of deformations\ while traction vectors on the surface G play the role of
stresses[ The assumption that displacement discontinuities are small allows the use of interface
laws formulated in the small perturbation case\ provided that the interface quantities are evaluated
in the current con_guration with reference to a frame conveniently connected with the current
interface G[

It is useful to notice that interface quantities t\ ðuŁ and ðvŁ are frame indi}erent if hypothesis "c#
is satis_ed\ i[e[ they transform respecting the transformation rules of vectors[ Consider in fact the
transformed coordinates of two points associated to the positive and negative parts of the interface[

x�¦ � c¦Qx¦\ x�− � c¦Qx−\ "09#

where c and Q are the position vector and the rotation matrix of the new reference frame with
respect to the old one[ The rule of transformation of the displacement discontinuity vector can be
derived from eqns "09# by simply taking the di}erence of the two expressions] ðuŁ� � QðuŁ[
From the di}erence of the time derivatives of eqns "09# the transformation rule for the velocity
discontinuity vector can be obtained]

ðvŁ� � Qþ ðx¦−x−Ł¦QðvŁ "00#

From the above equation it can be concluded that the vector ðvŁ is frame indi}erent if hypothesis
"c# is satis_ed\ i[e[ if ðx¦−x−Ł 3 9[

In this section two examples of interface laws are presented[ The _rst one is elastic while the
second one is elasticÐdamage[ The elasticÐdamage law is an example of interface laws satisfying
hypothesis "d#[

1[2[ Elastic interface law

An anisotropic elastic interface law can be formulated as a relation between the traction vector
t and the displacement discontinuity vector ðuŁ in which a dependence on the current orientation
of the interface G is introduced by means of the normal n to G[

t � `"ðuŁ\ n# "01#

In this case the respect of the principle of material frame indi}erence implies the satisfaction of
the following relation]

Q`"ðuŁ\ n# � `"QðuŁ\ Qn# "02#

An example of linear case of the law "01# can be formulated as follows]

tn � KnðuŁn\ tt � KtPðuŁ � Kt ðuŁt "03#

where the normal components tn\ ðuŁn and the tangent projections tt\ ðuŁt of the traction and
displacement discontinuity vectors have been distinguished[ Kn and Kt are interface elastic sti}!
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nesses\ with the dimension of a force over length cube^ P �"I−nnT# is the projection operator on
the surface G[ It can be shown that relations "03# satisfy eqn "02#[

1[3[ Elastic!dama`e interface law

An example of elasticÐdamage interface law is here presented having in mind as main application
the study of delamination\ i[e[ the debonding of adjacent layers in composite materials[ In this case
the level of tractions t which can be transmitted between the layers\ decreases with the opening or
sliding of adjacent layers until a critical level ðuŁc is reached[ The layers are then completely
separated[

A strain energy for unit surface of the damageable interface is _rst de_ned as follows]

Ed � 0
1
"0−dn#K¦

n ððuŁnŁ1
¦¦0

1
K−

n ððuŁnŁ1
−¦0

1
"0−dt#Kt > ðuŁt >1 "04#

where dn\ dt are two non!dimensional scalar damage variables which vary between 9 "no damage#
and 0 "total damage#^ K¦

n \ K−
n \ Kt are interface sti}nesses as in eqns "03#[ The symbols ð = Ł¦ and

ð = Ł− denote the positive and negative parts of =^ these are introduced in the strain energy in order
to take into account the unilateral e}ect\ i[e[ the di}erence in tensile and compressive behaviour
for the direction n normal to the surface^ as a consequence di}erent values K¦

n and K−
n of interface

sti}nesses for tension and compression have also been introduced[ >ðutŁ> denotes the Euclidean
norm of the tangent projection of ðuŁ on G[

The tractions tn\ tt and the damage energy release rates Yn\ Yt "energies per unit surface#
associated to damage variables are obtained by computing derivatives of the strain energy]

tn �
1Ed

1ðuŁn
�"0−dn#K¦

n ððuŁnŁ¦¦K−
n ððuŁnŁ−^ tt �

1Ed

1ðuŁt
�"0−dt#Kt ðuŁt "05#

Yn � −
1Ed

1dn

�
0
1

K¦
n ððuŁnŁ1

¦^ Yt � −
1Ed

1dt

�
0
1

Kt > ðuŁt >1 "06#

The evolution of damage phenomena is governed through a non!dimensional damage function
fd\ loadingÐunloading conditions and non!associated evolution laws for damage variables dn\ dt

fd � f"Yn\ Yt#−YÞ−0 "07#

fd ¾ 9^ fdl¾ � 9^ l¾ − 9 "08#

Ył � l¾^ d¾n � ln"YÞ#l¾^ d¾ t � lt "YÞ#l¾ "19#

The function f is positive\ convex and di}erentiable\ f"9# � 9[ It is worth noting that the evolution
law for damage variables can be equivalently expressed as follows]

YÞ � sup 60\ sup
t?¾t

"f"Yn\ Yt##7−0 "10#

dn � Ln"YÞ# 0 g
YÞ

9

ln"YÞ?# dYÞ?^ dt � Lt "YÞ# 0 g
YÞ

9

lt "YÞ?# dYÞ? "11#
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where t is the current time instant[ The following restrictions precise the chosen damage evolution
law[

L"9# � 9^ 9 ¾ L"YÞ# ¾ 0^
dL"YÞ#

dYÞ
− 9 "12#

dn � 0c dt � 0 "13#

In view of the above eqns "11# the evolution of the damage variables is governed by the choice
of functions Ln\t"YÞ# subject to conditions "12#[ Relation "13# implies that when complete damage
is reached for mode I "opening mode\ in direction n\ cf[ Fig[ 0#\ the interface is considered
completely damaged in modes II and III "shearing modes\ on the tangent plane# too[

The above elasticÐdamage interface law can be interpreted as a modi_cation\ due to the presence
of damage variables\ of the elastic law presented previously[ In addition to the elastic case\ it must
therefore be veri_ed the frame indi}erence of the damage evolution law[ This is assured by the fact
that the damage law is expressed using frame indi}erent scalar functions of time\ i[e[ Yn\ Yt[ It can
be noticed that no objective rates have been explicitly used for the formulation of the interface
constitutive law[ This is due to the fact that the evolution of damage depends only on the component
of the vectors along the normal n to the interface and on the norm of the projection on the tangent
plane[

The model presented is isotropic on the tangent plane\ it takes partially into account the
anisotropy of the response connected to the behaviour of composite materials[ The two damage
variables evolve at the same time\ but the velocity of evolution can be independently governed by
the choice of functions Ln\t"YÞ#[ The quantity chosen to govern the damage criterion is a norm of
energy variables associated to damage[ A particular choice which will be used for the numerical
examples of Section 4 is the following]

fd � z"anYn#a¦"atYt#a−YÞ−0^ Ln"YÞ# � gnYÞ^ Lt "YÞ# � ltYÞ "14#

where an\ at are nonnegative model parameters with the dimension of the inverse of Yn\ Yt^ a\ gn\ gt

are non!dimensional positive parameters[
The presented elasticÐdamage model depends on eight parameters] the elastic sti}nesses K¦

n \
K−

n \ Kt^ the damage function parameters an\ at\ a and the damage evolution parameters gn\ gt[ The
values of interface sti}nesses can be computed as] Kt 3 1Gtn:e^ K¦

n 3 Enn:e where Gtn\ and Enn are
shear and Young moduli of an ideal layer of thickness e representing the interface[ For numerical
applications Gtn\ and Enn can be assumed equal to the analogous values of an homogenised layer
of the composite or to the values attributed to the matrix^ e can be assumed equal to a fraction of
the layer thickness[ Parameter K−

n is the interface sti}ness for compression in direction normal to
the interface^ it is introduced in order to model the unilateral e}ect and it can be considered as a
penalisation parameter that allow one to satisfy unilateral constraint conditions^ for this reason it
must be chosen with a high value\ for simplicity it can also be made equal to K¦

n [ Parameters an\
at are connected to damage initiation[ They can be identi_ed with the inverse of damage initiation
energies in pure mode I and in shear mode situations\ i[e[] an � 0:Y9n\ at � 0:T9t[ a can be identi_ed
starting from information connected to the behaviour in mixed mode situations[ Parameters gn\ gt

can be evaluated from the knowledge of fracture energies in pure mode I and in shear modes\
respectively[
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A deeper discussion on the identi_cation of a damage model similar to that here presented can
be found in Allix and Corigliano "0885#[ A recent experimental study on delamination specimens
can be found in Allix et al[ "0885# where particular attention has been paid on the dependence of
interface properties on the _bre direction[

1[4[ Remarks

"i# Damage interface laws can be interpreted as a generalisation of the model of elastic springs
with softening[ They allow the simulation of pure and mixed!mode situations[ Through the
use of interface laws\ inelastic e}ects\ possibly associated with friction\ can be easily taken
into account by introducing a decomposition of the displacement jump in an elastic and an
inelastic part^ viscous e}ects can be taken into account as well[

"ii# Based on its de_nition\ the interface G is seen as a medium subject to large transformations
but small deformations\ the deformation measure being represented by the displacement
discontinuity vector ðuŁ[

"iii# The proposed formulation allows the study of delamination phenomena in layered composites\
particularly coupled with buckling of the laminae[ Other practical applications can be con!
sidered such as the initiation and propagation of defects and fracture in rubber!like materials
and the study of adhesive layers[

"iv# As seen in Section 1[1\ unilateral contact conditions can be introduced in the formulation by
means of unilateral e}ects in the interface law[ The same kind of unilateral conditions can be
applied to the part Gc"u# of the current interface\ thus avoiding inter!penetration[ As already
observed at the beginning of the present Section 1\ the study of a true contact problem has
been ruled out from the present formulation[

"v# In previous works use has been made of orthotropic interface laws in the linear geometric
case[ Orthotropic directions were chosen as the normal to the interface and the bisectors of
the _bres of adjacent layers[ This choice could be extended to the non!linear range[

"vi# Interface laws can be expressed in a complete rate form[ In that case the objective rate used
must be associated to the rotation of the normal n to the interface[ To complete the de_nition
of the rotation one can\ for example\ introduce two orthogonal directions of the tangent plane
of G which remains orthogonal in the in_nitesimal displacement[ They are associated to unit
eigenvectors of the operator P ="1vm:1m#sym = P

2[ Application to two!dimensional laminated rectilinear beams

In this Section the general formulation presented in the previous Section 1 is particularised to
the case of laminated rectilinear beams studied in two dimensions[ This particularisation allows
one to exemplify what is described in Section 1 in general terms and is particularly useful for the
study of delamination specimens subject to cylindrical bending states\ as shown in Section 4[

Consider a laminated beam composed by n layers such that drawn in Fig[ 2[ The reference frame
is not associated to a particular layer^ the thickness of layer i is given by hi �"xi¦0

2 −xi
2#[ The elastic

body V? de_ned in Section 1 coincides in the present case with the set of n layers[ The set of interfaces
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Fig[ 2[ Deformable beams in contact through an interface G[

G is represented by the "n−0# line of connections between adjacent layers\ damaging interfaces
simulate progressive delamination of the beam[

A kinematic hypothesis for each of the layers composing the laminated is _rst introduced in
Section 2[0 and its consequences on the description of the problem in terms of generalised variables
are deduced[ In Section 2[1 it is shown how the interface quantities can be practically evaluated[

2[0[ Description of the layers

Each layer of the laminated is supposed to behave like a beam\ obeying the Timoshenko
kinematic[ Moreover P22 is assumed to be negligible due to the small thickness over length ratio[
The displacement _eld for each point in the i!th layer\ having the initial position "x0\ x2#\ is de_ned
as "see Fig[ 3#]

ui
0"x0\ x2# � ui

9"x0#¦x2u
i"x0#^ ui

1 � 9^ ui
2 � wi

9"x0# "15#

In the above equations\ ui
0\ ui

1\ ui
2 are displacement components in directions x0\ x1\ x2\ respec!

tively^ ui
9 and wi

9 are the components of the displacement vector of a reference point m9"x0# which
is found at the intersection of the x0 axis with the prolongation of the beam section "see Fig[ 3#^ ui

is the rotation of the beam section with respect to the _xed direction x2[ Functions ui
9\ wi

9 and ui

are generalised displacements for the layer\ collected in vector s[
The above kinematic hypotheses introduced for the layer are motivated by the importance of

shear deformation in composite specimens[ They are similar to those used\ among others\ by
Kanninen "0862# and Whitney "0878# for the analysis of DCB and ENF specimens and represent
a particularisation to the two!dimensional case of the ReissnerÐMindlin kinematic for plates[

Following the above hypotheses the contribution of a single layer i to the internal power of the
elastic body V? ðeqn "8#Ł can be expressed as]
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Fig[ 3[ Kinematic hypothesis for the layers[

0gV?9

1C"E#
1E

] Eþ dV91i

� gx0
gAi

"P00Eþ�00 ¦1P02Eþ�02#i dA dx0 "16#

In the above equation the integral over the layer volume has been split in an integral over the
length and an integral over the section area A[

E�00 and E�02 can be computed after the introduction of the displacement _eld "15# in the
expression of the GreenÐLagrange strain tensor "6#[ One thus obtains]

E00 �
du9

dx0

¦x2

du

dx0

−
0
1 0

dw9

dx01
1

¦$
0
1 0

du9

dx0

¦x2

du

dx01
1

% "17a#

E02 �
0
1 0

dw9

dx0

−
dw9

dx01¦$
u

1 0
du9

dx0

¦x2

du

dx01% "17b#

where the superscript i has been omitted for brevity as in the following of this sub!section[
The above relations "17# are here used neglecting the terms in square brackets\ thus obtaining a

formulation which di}er from the linear geometry case for the presence of the term 0
1
"dw9:dx0#1 in

the expression of E00 only[ This assumption is equivalent to the moderate rotation hypothesis of
the von Karman plate theory which was used\ among others\ by Storakers and Andersson "0877#\
Cochelin and PotierÐFerry "0880# for the study of buckling!induced delamination[

By computing time derivatives of E00\ E02 in eqn "17#\ the internal power relevant to a single
layer ðeqn "16#Ł can be rewritten as]
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gx0
$0gA

P00 dA1 0
du¾9

dx0

¦
dw9

dx0

dw¾ 9

dx01¦0gA

P00x2 dA1 0
du¾

dx01¦0gA

P02 dA1 0u¾¦
dw¾ 9

dx01%i

dx0

0 gx0

QTq¾ dx0 "18#

In the above equation\ vectors of static Q and of the rate of kinematic q generalised beam
variables have been de_ned[ The following generalised deformations are therefore introduced[

q0 �
du9

dx0

¦
0
1 0

dw9

dx01
1

^ q1 �
du

dx0

^ q2 � u¦
dw9

dx0

"29#

Indices 0\ 1\ 2 in the above equations denote the axial\ bending and shear generalised components\
respectively[

By assuming a linear elastic constitutive law for each layer\ the generalised stresses and defor!
mations can be connected through the following relations "20#\ "21#[

Q 0 n
Q0

Q1

Q2
n� n

A00 A01 9

A10 A11 9

9 9 A22
n n
q0

q1

q2
n0 Aq "20#

A00 � gA

E0 dA^ A01 � A10 � gA

E0x2 dA^ A11 � gA

E0x
1
2 dA^ A22 � gA

G02 dA "21#

The elastic coe.cients E0 and G02 are the e}ective longitudinal and shear moduli obtained
applying\ on the initial con_guration\ the classical plate theory in the case of cylindrical bending[

By introducing eqns "18#Ð"20# in eqn "17#\ the following expression can be given to the con!
tribution of the set of n layers to the internal power[

s
n

i�0 0gx0

QTq¾�dx01i

� s
n

i�0 0gx0

qTAq¾�dx01i

"22#

2[1[ Description of the interface

The description of the interface rests on its de_nition given in Section 1[ With reference to Fig[
2\ taken into account eqns "15#\ for the interface i " i � 0\ [ [ [ \ n−0# the expressions of the
displacement discontinuity in the global reference frame ðeqn "0#Ł and of the mean displacement
de_ning G ðeqn "1#Ł result in]

ui
m � b

ui
m0

ui
m2b�

0
1 b

ui
9m¦xi¦0

2 ui
m

wi
9m b ^ ðuŁi � b

ðuŁi0

ðuŁi2b� b
ðu9Łi¦xi¦0

2 ðuŁi

ðw9Łi b "23a\ b#

where\ for a quantity y\ the symbols yi
m and ðyŁi have the following meaning

yi
m 0

yi¦0¦yi

1
^ ðyŁi 0 yi¦0−yi "23c#
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Fig[ 4[ Current con_guration for an interface[

In order to be able to compute the internal power relevant to the interfaces\ it is necessary to
evaluate the components of the displacement discontinuity vector and of the velocity discontinuity
vector in a local reference frame moving together with the interface[ This is possible due to the
de_nition of the interface ðeqns "1# and "2#Ł\ which in the present case becomes "see Fig[ 4#]

b
x0G

x2Gb
i

� b
x0¦ui

m0

xi¦0
c ¦ui

m2b "24#

where x0G\ x2G are the coordinates of a point on Gi\ in the current con_guration[ Equation "24# is
a parametric representation of the interface\ where the parameter is the coordinate x0 in the initial
con_guration[ It is\ therefore\ straightforward to derive the expression of the tangent t "not to be
confused with the traction vector# and normal n vectors to the line and of the measure of the
elementary length dG in the current con_guration[ With reference to the notation in Fig[ 4\ these
are]

t �
0
j 0n000¦

1um0

1x0 1¦n2

1um2

1x0 1^ n �
0
j 0−n0

1um2

1x0

¦n2 00¦
1um0

1x0 11 "25#

dG �X 00¦
1um0

1x0 1
1

¦0
1um2

1x0 1
1

dx0 0 j dx0 "26#

In the above eqns "25#\ "26# n0 and n2 are the unit vectors directed as axes 0 and 2\ respectively[
The superscript i has been dropped for brevity\ as done in the remaining part of this section[ For
numerical applications it is useful to express the velocity discontinuity vector in the local reference
frame n\ t as]
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ðvŁ 0 b
ðvŁt
ðvŁnb� R b

ðu¾Ł0
ðu¾Ł2b� RðvŁ02^ R �

0
j

H

H

H

H

H

H

00¦
1um0

1x0 1
1um2

1x0

−
1um2

1x0 00¦
1um0

1x0 1

H

H

H

H

H

H

"27#

where ðvŁ02 collects the components of the velocity discontinuity in the global frame 0Ð2[
The expression of the internal power relevant to the set of n−0 interfaces ðeqn "8#Ł can therefore

be re!written in a form useful for numerical computations "see Section 3#]

s
n−0

i�0 0gGi

t = ðvŁ� dG1i

� s
n−0

i�0 0gx0

t = RðvŁ�02j dx01i

"28#

In order to be consistent with the approximations introduced in Section 2[0 concerning eqns "17#\
the expressions of rotation matrix R and of the Jacobian j can be approximated as follows]

j½3X 0¦0
1um2

1x0 1
1

^ R 3
0
j½

H

H

H

H

H

H

0
1um2

1x0

−
1um2

1x0

0

H

H

H

H

H

H

"39#

2[2[ Remarks

"i# The formulation adopted in Section 2[0 for a laminated beam could be extended to laminated
plates[ In the case of curved beams or shells\ the formulation should suitably be completed
with the equations representing a coordinate transformation from a reference\ rectilinear\
con_guration to the real initial curved one[

"ii# The presented formulation is suitable for deriving _nite elements for laminated beams and or
plates[

3[ Finite element model for rectilinear laminated beams and numerical solution strategy

The formulation presented in Section 1 and specialised in Section 2 to rectilinear laminated
beams is here applied in a _nite element context[ Some detail on the spatial discretisation for the
layers are given in Section 3[0\ while in Section 3[1 the spatial discretisation for the interface is
discussed[ Due to the fact that geometrical and material instabilities are introduced in the formu!
lation\ the solution strategy deserve some discussion which is presented in Section 3[2[

3[0[ Layer discretisation

To be consistent with the kinematic hypothesis of eqn of eqn "15#\ the generalised layer dis!
placements ui

9"x0#\ wi
9"x0# and ui"x0# are modelled by means of interpolation functions and nodal

values\ after a spatial discretisation along the direction x0[ For simplicity the discretisation must
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be the same for all layers\ in order to have corresponding nodes and nodal values[ For each layer\
implicitly assuming the assemblage of all _nite elements along the layer\ one can write]

si"x0# 0 n
ui

9"x0#

wi
9"x0#

ui"x0#
n� N"x0#Ui "30#

where N"x0# is a matrix of shape functions and Ui collects the nodal parameters relevant to the
layer i[

From the displacement model "30# "dropping the superscript i# the generalised layer defor!
mations and deformation rate vectors ðeqns "18#\ "29#Ł can be recovered after derivation^
q � B"U#U\ q¾ �"B
"U#Uþ[ Due to the fact that with respect to a linear geometric case the only
di}erence is in the expression of the _rst generalised deformation q0\ it is possible to give to matrices
B"U# and B
"U# a particular form\ which holds independently from the kind of _nite element
interpolations chosen[

q � B"U#U 0 ðBL¦BNL"U#ŁU^ q¾ � B
"U#Uþ 0 ðBL¦1BNL"U#ŁUþ "31#

In the above equations\ matrix BL is the _nite element compatibility matrix which holds in the
linear geometry case^ matrix BNL"U# represents the modi_cation of the _rst one due to the non!
linear geometry e}ects[

After introduction of the interpolated _elds in the expression of the internal power "22#\ its
spatially discretised form can be obtained[

3[1[ Interface discretisation

The spatial interpolation of interface quantities is here directly derived from that of the layers
adjacent to the relevant interface[ Starting from eqn "23b# and taking into account layer interp!
olation "30# for layers i¦0 and i\ the interpolated displacement discontinuity and velocity dis!
continuity vectors for the interface i can be given the following formal expression

ðuŁi"x0# � b
ðuŁi0"x0#

ðuŁi2"x0#b� BI "x0#Ui
I^ ðvŁi"x0# � b

ðvŁi0"x0#

ðvŁi2"x0#b� BI "x0#Uþ i
I^ "32#

where the vector of nodal parameters Ui
I involves nodal degrees of freedom pertaining to the layers

adjacent to the interface and the assemblage of elements along the interface has been implicitly
assumed as for eqn "30#[

Interpolated _elds "32# allow the discretisation of the internal power "28# relevant to the interface[
Notice that the expressions "32# give the displacement discontinuity and velocity discontinuity
vectors in the global reference frame[ In order to practically use eqn "28#\ also the expressions of
the rotation matrix R and of the Jacobian j must be found as functions of the nodal parameters
governing the displacement _elds[ This can be done by means of expressions "27b# for R\ "26# for
j and "23a# for the mean displacement ui

m[ R and j can\ therefore\ be considered known function
of parameters U[
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3[2[ Solution strate`y

After spatial discretisation carried out as described in Sections 3[0 and 3[1\ the problem intro!
duced in Section 1\ and specialised in Section 2\ results to be governed by the discretised version
of the principle of virtual powers and by an interface constitutive law of the kind described in
Section 1[1[

3[2[0[ Principle of virtual powers
Let U be the class of kinematically admissible nodal displacement rates and P the vector of

equivalent nodal loads\ the spatially discretised version of the pvp reads]

gx0

ðUTBT"U#AB
"U#¦tT"U#R"U#BIj"U#Ł dx0Uþ� � PTUþ� for any Uþ� $ V "33#

3[2[1[ Interface constitutive law
For each interface i\ the interface law imposed at a local level can be formally expressed as]

ðuŁi � RBIU
i
I^ ti � I"ðuŁi\ xi# "34#

In eqn "33# the contribution of each layer and interface have been formally assembled by
implicitly de_ning matrices and vectors expanded at the global level of the laminate[ For the sake
of simplicity these are noted with the same symbols previously used for single layer and interface
element contributions[ The interface traction vector t depends on vector U "and on the past history
in the case of irreversible interface models# through the interface law[ In eqn "34# the interface
constitutive law is only formally expressed as a relation between interface tractions t and interface
displacement discontinuities ðuŁ^ x is a set of internal variables[ The elastic constitutive law of the
layers and the compatibility conditions are already introduced in eqn "33#[

The response of the body is to be computed in a time interval ð9\ T Ł[ By choosing convenient
instants 9 � t9\ t0 \ [ [ [ \ tm\ the time interval is subdivided in time steps Dt � tm¦0−tm[ The response
being known at a time instant tm\ the global equilibrium equation "33#\ discretised in space through
the _nite element method\ is solved at time instant tm¦0[ This is equivalent to solve the following
non!linear system of equations in the unknowns U]

F"Um¦0#−mm¦0P � 9 "35a#

F"Um¦0 0 gx0

ðB
T"Um¦0#AB"Um¦0#Ł dx0Um¦0¦gx0

ðBT
I RT"Um¦0#t"Um¦0#j"Um¦0#Ł dx0

"35b#

In the above equations\ subscript m¦0 and m denote quantities computed at time instants tm¦0

and tm\ respectively^ F"Um¦0# represents the vector of internal forces^ mm¦0 is a load multiplier[
Note that F"Um¦0# can be considered as a known non!linear function of variables Um¦0[ The
dependence of F on Um¦0 is given by _nite element interpolations and consequent de_nitions of
B
"Um¦0#\ B"Um¦0#\ R"Um¦0#\ j"Um¦0# and by the numerical integration on the time step of the
interface law expressed in the term t"Um¦0#[

The solution of eqn "35# under load control can be carried out by directly applying an iterative
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procedure\ such as the NewtonÐRaphson method\ in which the load factor mm¦0 is a known
quantity and vector Um¦0 the only unknown[ With respect to a linear geometry case this obviously
implies a more complex linearisation of function F"Um¦0#[

In the presence of geometrical non!linearities and softening constitutive laws\ of the kind
introduced for the interface\ the global behaviour can show snap!through or snap!back phenomena
which cannot be treated by use of a load!controlled analysis[ This is surely so in delamination tests
where the response is generally unstable under load control and can also be unstable under
displacement control "see Corigliano\ 0882^ Allix et al[ 0883^ Allix and Corigliano\ 0885#[ For this
reason an algorithm is used in which the controlled variable is neither the load factor nor the
displacement in the charged point[

The algorithm in point can be considered of a Riks!type "Riks\ 0861^ Cris_eld\ 0870^ Ramm\
0870# with a local constraint condition "Chen and Schreyer\ 0889^ Schellekens and de Borst\ 0881^
Daudeville and Ladave�ze\ 0882# and has been proposed in Corigliano "0882#[ The controlled
quantity is a norm of the displacement jump increment vector\ computed in the local reference
frame associated to the current interface con_guration\ in the Gauss point S which result to be the
most damaged one among those belonging to the set of points used for the evaluation of the
interface law[ Each step of the analysis consists of _nding the solution of eqn "35# submitted to
the following constraint condition]

cTDðuŁS−b � cTB�"Um¦0¦Um#−b � 9 "36#

In the above equation\ c is a vector of weighting coe.cients^ b is a _xed parameter^ B� denotes
the operator which connects\ in an approximate form\ the displacement discontinuity increment
in point S in the local reference frame of the interface\ to the global degrees of freedom vector]

DðuŁS �"Rm¦0BIUm¦0−RmBIUm# 3 RmBI "Um¦0−Um# 0 B�DU "37#

Vector c can be computed by making use of the results obtained at the end of the previous step]

c �
ðuŁSm

>ðuŁSm>
^ >ðuŁ> � zðuŁ1n¦>ðuŁt>1 "38#

Equations "35# and "36# result in a non!linear system in the unknowns Um¦0 and mm¦0^ it is solved
by an iterative procedure of the NewtonÐRaphson kind[

3[3[ Remarks

"i# The interfacial connection is here seen as a surfacic medium\ the sti}nesses of which are
material properties[ The {ratio| of the interface and layer sti}ness governs the decaying
properties of the solution[ The higher this ratio the more localised the solution is[ The
interlaminar stress distribution should always be correctly reproduced[ Therefore\ the mesh
size should be chosen with respect to this ratio on the basis of the elastic solution[ The
initiation of the delamination process is greatly in~uenced by this ratio\ while the subsequent
propagation phase is much less in~uenced[

"ii# Interface discretisation and interpolations can in principle be chosen di}erently from those of
adjacent parts as done in a di}erent context in Bolzon and Corigliano "0886#[
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Fig[ 5[ Two superposed beams studied in the numerical examples[

"iii# In the nonlinear geometry case it is in general made use of an algorithm with a global
constraint conditions such that the arc!length method[ The comparison between the present
local constraint approach and other used in the literature needs to be examined[

4[ Numerical examples

In the present Section some numerical experiences concerning the simulation of laminated
beams are presented[ The formulation discussed in previous Sections is applied to the simple\ but
meaningful\ case of a laminated beam composed of two layers only\ which can partly be initially
already disconnected\ thus simulating an initial delamination[ In these _rst examples the only
signi_cant material parameters is the critical energy release rate[

The de_nition of the geometrical parameters and the choice of the global reference frame are
show in Fig[ 5[ The constant depth of the specimen is noted with B[

The chosen interpolation for layers 0 and 1 in Fig[ 5 ðeqn "30#Ł is based on _nite elements
which are linear for the displacement u9"x0# and the rotation u"x0# "two interpolation parameters
coinciding with the nodal values# and cubic of the Hermite type for the displacement w9"x0# " four
interpolation parameters coinciding with the nodal values and derivatives#[ Hence layer _nite
elements have eight nodal degrees of freedom[

In the chosen example the set G is reduced to a single interface identi_ed by the coordinate
x0

2 � 9 in the initial con_guration[ The expression of interface quantities given in eqns "23# therefore
simpli_es as follows]

um � b
um0

um2b�
0
1 b

u9m

w9mb^ ðuŁ � b
ðuŁ0
ðuŁ2b� b

ðu9Ł

ðw9Łb "49#

As far as the interface discretisation is concerned\ matrix BI in eqn "32#\ together with vector UI

can be obtained after the use of eqns "49# and "30# specialised to the present case[ As shown in
eqn "49#\ the rotation u does not appear in the expression of interface quantities due to the
particular reference frame chosen^ hence the nodal degrees of freedom involved in vector UI are
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only those which govern the interpolations of functions u9"x0# and w9"x0# in the two adjacent
layers\ twelve totally[ In order to complete the computations also the rotation matrix R\ the
Jacobian j and the contribution of the interface to the global tangent matrix must be derived[

In the following sub!sections 4[0Ð4[2 some meaningful examples which can be considered starting
from the double!beam device of Fig[ 5 are discussed[

The _rst example concerning a Double Cantilever Beam "DCB# test\ is discussed in order to
show that geometrical e}ects could in some cases be relevant in the analysis of classical interlaminar
fracture tests[ The second example shows the potentiality of the numerical model in following
delamination induced by buckling[ The third example is a classical one in the literature of buckling!
induced delamination[ Results similar to those obtained by e[g[ Bruno and Grimaldi "0889# are
here derived through the use of the numerical model based on interface laws presented in this
paper[

4[0[ Geometrical effects on a DCB specimen

As a _rst example it is here chosen to verify the in~uence of geometrical nonlinearities on the
global response of a DCB specimen "Fig[ 6#[

The geometrical parameters\ with the meaning of Fig[ 5\ are the following]

B � 0 mm^ L � 19 mm^ a9 � 4[4 mm^ h0 � h1 � 9[0Ð9[4 mm

The above dimensions are all about one tenth of those used in practical experiences[ The
thickness of the layers varies in the range 9[0Ð9[4 mm in order to obtain di}erent ~exural sti}nesses
and hence di}erent degrees of in~uence of geometrical e}ects on the global reference[

The elastic parameters describing the layer behaviour are the Young modulus E0 in direction 0
and the shear modulus G02 for shear in the plane 02[

E0 � 024\999 MPa^ G02 � 4699 MPa

which are assumed to be the same for both layers[
In order to simulate the progressive delamination in pure mode I\ an interface model of a bilinear

Fig[ 6[ Double Cantilever Beam test[
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Fig[ 7[ Bilinear softening interface model[

softening kind such as that shown in Fig[ 7\ formulated in the framework of softening plasticity
and proposed in a more general context in Corigliano "0882#\ has been used[ The relevant material
parameters\ with the meaning of Fig[ 7 are the following]

K¦
n � K−

n � 0999\999 N:mm2^ tn9 � 49 MPa^ ðuŁ 9[905 mm^ GIc � 9[3 N:mm

It is worth noting that in the present example\ due to the symmetric loading of the DCB test\
the interface G do not move from its initial con_guration and remains always rectilinear[

The numerical simulations of the DCB test have been carried out under load control until an
interface Gauss point results to be damaged for the _rst time\ after this situation the analysis has
been controlled locally\ as described in Section 3[2[

The results of numerical analyses are shown in Fig[ 8 in terms of loadÐdisplacement plots
relevant to the loaded point at the extremum of one of the two arms of the specimen "Fig[ 6#[ The
di}erent plots are obtained at varying thickness of both layers in the range above indicated[ For
each thickness the responses obtained with and without nonlinear geometry e}ects are compared
in the _gure[ As expected\ the in~uence of nonlinear geometry e}ects increases at decreasing
thickness\ i[e[ at decreasing ~exural sti}ness of each layer[

A deeper discussion on nonlinear e}ects in the DCB delamination test and on other typical
delamination tests is worthwhile and will be presented in a parallel work[
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Fig[ 8[ LoadÐdisplacement plots for a DCB test at varying layer thickness[

Fig[ 09[ Compressed cantilever beam with symmetrical perturbation[

4[1[ Bucklin`!induced delamination in a cantilever beam under compressive loadin`

The second example discussed concerns a compressed beam\ shown in Fig[ 09[ A _xed small
perturbation loading P9 � 9[990 N of a DCB kind is imposed on the two layers[ The geometrical
data are now the following]

B � 0 mm^ L � 19 mm^ a9 � 4Ð09 mm^ h0 � h1 � 9[1 mm

The elastic parameters for the layers are the same as in sub!Section 4[0\ while for the interface
the same model of sub!Section 4[0 has been used at varying degrees of softening and Critical
Fracture Energy GIc[ The variation of GIc has been obtained at _xed value of limit stress t29 in the
range GIc � 9[91Ð0[5 N:mm[

The numerical analyses presented have been carried out as in sub!Section 4[0\ starting with a
load control and then turning to a local control after an interface Gauss point has been damaged[
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Fig[ 00[ Compressive load vs transversal displacement plots in a compressed cantilever beam with symmetrical
perturbation at varying fracture energy[

In Fig[ 00 plots of compressive load on a layer vs the vertical displacement of the layer end "Fig[
09# are shown[ The behaviour of the beam with a non!damaging interface is that of an Euler
cantilever beam with the length coinciding with that of the initial fracture a9[ At the critical load
level the beam buckles and the deformed con_guration is an ampli_cation of the initial symmetric
perturbation[ The theoretical critical load value for a single layer given by the classical formula is]

Pcr �
p1EI

3a1
� 1[11 N

where I is the inertia of a single layer[ This value is almost reached by the numerical simulation[
The di}erence should be attributed to the shear deformation not included in the classical formula[

After the buckling\ the interlaminar tractions become important\ this can lead to delamination
as shown on Fig[ 00 by the plots obtained with a damaging interface[ In this case\ in fact\ the plot
of load vs transversal displacement coincide with that of the elastic case until buckling^ after
buckling mode!I delamination starts and this is the reason of the softening part of the plot[ From
Fig[ 00 it can also be seen that the starting point of delamination is postponed with increasing
interface fracture energy GIc[ In Fig[ 01 the deformed con_gurations of the laminating beams at
increasing time step are shown for the case with GIc � 9[3 N:mm[

4[2[ Bucklin` induced delamination in a built!in beam under compressive loadin`

The example here discussed consists in the simulation of the built!in beam with axial loading\
symmetrical perturbation and central initial delamination of Fig[ 02[ The geometrical parameters
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Fig[ 01[ Progressive delamination in a symmetrically perturbed compressed cantilever beam[

Fig[ 02[ Built!in beam with central delamination\ under compressive loading and symmetrical perturbation[

are as in Section 4[1\ with an initial length of the central delamination crack equal to 09 mm[ The
constitutive parameters for the layers are as in previous examples[ The interface has been chosen
to have the elasticÐdamage law of Section 1[1 with the following parameters]

K¦
n � K−

n � Kt � 099\999 N:mm2

an � at � 79 mm:N^ a � 0^ gn � gt � 9[010

which give a fracture energy GIc � 9[3 N:mm[
The elastic response of the specimen is now characterised by the competition between global

and local buckling[ The theoretical value of local buckling load is]
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P loc
cr � 3

p1EI

a1
� 24[42 N

where P is half of the global axial load "see Fig[ 02#[ The theoretical value of global buckling load
for a perfect beam "without central delamination a# coincides\ in the present case\ with P loc

cr

Pglo
cr �

0
1 03

p1E7I

L1 1� 24[42 N

A theoretical evaluation of the global buckling load when a delamination crack is present is
approximately given by the following formula]

wPglo
cr 3 0

L−a
L 1 03

p1E7I

L1 1¦01
a
L1 03

p1E1I

L1 1� 11[11 N

where the inertia of the non delaminated "7I# and of the delaminated "1I# parts of the beam have
been considered[ An analysis with elastic interface has been _rst done with an non!symmetric
perturbation P9 � 9[990 N[ The plot of axial load vs transversal displacement of one of the
perturbed central point of the layers "Fig[ 02# is presented in Fig[ 03[ The beam starts buckling\ in

Fig[ 03[ Compressive load vs transversal displacement plots in a built!in beam under compressive loading and symmetrical
perturbation[
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Fig[ 04[ Progressive delamination in a symmetrically perturbed compressed built!in beam[

a global mode\ at a load of about 11[4 N which almost coincide with the above approximate
evaluation[ Subsequently the numerical response at increasing load looses the global buckling
mode and reaches the level of about 20 N\ at which local buckling is attained[

The elastic response is compared in Fig[ 03 with those obtained with elasticÐdamage interfaces\
at varying initial symmetric perturbation P9 in the range P9 � 9[90Ð9[04 N[ In the damaging cases
local buckling is attained\ this is a cause of mode I delamination[ The softening branches result to
be almost independent from the initial perturbation[ In Fig[ 04 the deformed con_guration for the
symmetrical delamination is shown at di}erent time steps[

5[ Concluding remarks

In the present paper the problem of numerical simulation of delamination processes in the
presence of important geometrical e}ects has been discussed[ A uni_ed formulation based on the
use of interface models has been proposed[ The treatment of geometrical nonlinearities and the
parallel use of interface constitutive laws is allowed by the introduction of the fundamental
hypothesis that displacement jumps along an interface are small[ The proposed formulation has
been specialised to rectilinear laminated beams and numerical aspects concerning the _nite element
implementation and the solution strategy have been discussed[

Some numerical examples concerning the propagation of delamination in interlaminar fracture
specimens have been presented[ In the examples the interaction between the interface degradation
and the buckling of layers has been shown[ More advanced numerical examples have to be treated
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in order to fully demonstrate the interest of the proposed approach[ In particular\ examples
concerning delaminations which initiate and then propagate\ have to be solved[

The proposed interface modelling in a large displacement context allows in principle the simu!
lation of the whole delamination process\ from initiation to propagation and _nal failure[ It can
be coupled with plate and shell theories for laminated composites^ it can and also be applied to
other classes of problems such as that of the study of adhesives between rubber like materials[

Further studies should concern comparisons of the numerical procedure with experimental
results^ the introduction of true contact conditions in the laminated area[
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